PRIMORDIAL NUCLEOSYNTHESIS : A COSMOLOGICAL PROBE

Gary Steigman

Departments of Physics and Astronomy Center for Cosmology and Astro-Particle Physics Ohio State University

IAU Symposium 268 : Light Elements in the Universe Geneva, Switzerland, November 9, 2009

In The Early Universe: H² α Gρ

Expansion Rate Parameter : S

S is a Probe of Non - Standard Physics • $S^2 \equiv (H'/H)^2 = G'\rho'/G\rho \equiv 1 + 7\Delta N_v/43$ $\Delta N_v = (\rho' - \rho) / \rho_v$ and $N_v = 3 + \Delta N_v$ • S \Leftrightarrow N_v <u>NOTE</u>: If $\rho' = \rho$, G'/G = S² = 1 + 7 Δ N, / 43 • ⁴He is sensitive to S(N_v); D probes η_{B}

<u>"Standard" Big Bang Nucleosynthesis</u> (<u>SBBN</u>)

An Expanding Universe Described By General Relativity, Filled With Radiation, Including 3 Flavors Of Light Neutrinos ($N_v = 3$) The relic abundances of D, ³He, ⁴He, ⁷Li are predicted as a function of only one parameter: * The baryon to photon ratio : η_B

Big Bang Nucleosynthesis (BBN)

An Expanding Universe Described By General Relativity, Filled With Radiation, Including N_{ν} Flavors Of Light Neutrinos

The relic abundances of D, ³He, ⁴He, ⁷Li are predicted as a function of <u>two</u> parameters : * <u>The baryon to photon ratio</u> : η_B * <u>The effective number of neutrinos</u> : N_y BBN Provides A Key Probe Of The Physics And Early Evolution Of The Universe

BBN (~ 3 Minutes), The CMB (~ 400 kyr),
LSS (~ 10 Gyr) Provide <u>Complementary</u> Probes
Of The Early Evolution Of The Universe

* Do the BBN - predicted abundances agree with observationally - inferred primordial abundances ?

* Do the BBN values of η_B and S (N_v) agree with independent (non-BBN) observations (e.g., from the CMB and LSS) ?

SBBN – Predicted Primordial Abundances

DEUTERIUM Is The Baryometer Of Choice

- The Post BBN Evolution of D is Simple :
 As the Universe evolves, D is only DESTROYED ⇒
 - * Anywhere, Anytime : $(D/H)_t \leq (D/H)_P$
 - * For Z << Z_{\odot} : (D/H)_t \rightarrow (D/H)_P (Deuterium Plateau)
- (D/H) P is sensitive to the baryon density ($\propto \eta_B^{-1.6}$)
- H I and D I are observed in Absorption in High z, Low – Z, QSO Absorption Line Systems (QSOALS)

Galactic ³He Observations (HII Regions)

The ⁴He abundance is measured via H and He recombination lines from metal-poor, extragalactic H II regions (Blue Compact Galaxies).

Theorist's HII Region

Real HII Region

In determining the primordial helium abundance, systematic errors (underlying stellar absorption, temperature variations, ionization corrections, atomic emissivities, inhomogeneities,) dominate over the statistical errors and over the uncertain extrapolation to zero metallicity. $\sigma(Y_{P}) \approx 0.006, \text{ NOT } < 0.001 !$

<u>Note</u> : $\Delta Y = (\Delta Y / \Delta Z) Z < \sigma(Y_P)$

But ! Lithium – 7 Is A Problem

Lithium too low by a factor of ~3!

Lithium too low by a factor of ~5!

CMB Temperature Anisotropy Spectrum **Depends On The Baryon Density** η_{10} (CMB) = 6.22 ± 0.16 (Dunkley et al. 2008) For N_v = 3, is η_B (CMB) = η_B (SBBN)? $\eta_{10} (SBBN + (D/H)_P) = 5.80 \pm 0.28$ SBBN & CMB Agree Within ~ 1.5σ

³He Observations (Galactic HII Regions) ³He/H vs. O/H ⁴ ³He & O Correlated ? ⁹ Post – BBN Stellar Production ?

For $N_v = 3$, BBN (D, ³He, ⁴He) Agrees With The CMB + LSS + H₀ (But, Lithium Is A Problem !)

BBN + CMB Constraint On N_v

For non – standard BBN ($N_v \neq 3$) (D/H)_P $\alpha \eta_D^{-1.6}$, where $\eta_D \equiv \eta_D(\eta_{10}, N_v)$

 $N_v \neq 3 \text{ may}$ reflect a real (?) difference between $\eta_D \& \eta_{10}$. But, (D/H)_P depends weakly on N_v , which inflates any $N_v \neq 3$ determined this way.

If $\eta_{10} \equiv \eta_{10} (CMB) \implies N_v = 4.0 \pm 0.7$ $\implies N_v = 3 @ \sim 1.4 \sigma$ BBN with $\eta_{10} (CMB) = 6.22 \pm 0.16 \& N_v = 4.0 \pm 0.7$

Non – standard BBN ($N_v \neq 3$) with η_{10} (CMB) = 6.22 ± 0.16 & N_y = 4.0 ± 0.7 is consistent with D, ³He, & ⁴He (But, ⁷Li?) **BBN + CMB Combined Can Constrain** Non-standard Cosmology & Particle Physics

- Why is the spread in D abundances so large?
- Why is ³He/H uncorrelated with O/H and/or R?
- What are the systematic errors in Y_P ? Are there observing strategies to reduce them?
- What is the primordial abundance of ⁷Li (⁶Li)?

🗡 We (theorists) need more (better) data !

Comparing BBN And The CMB

Entropy (CMB Photon) Conservation

- * In a comoving volume, $N_{\gamma} = N_{B} / \eta_{B}$
- * For conserved baryons, N_B = constant
- * Comparing η_B at BBN and at Recombination

 $\Rightarrow \Delta N_{\gamma} / N_{\gamma} (BBN) = -0.07 \pm 0.05$

 $\Rightarrow \Delta N_{\gamma} = 0 @ \sim 1.4 \sigma$

"Extra" Radiation Density?

Example: Late decay of a massive particle Recall that: $\rho'_{R} / \rho_{R} = S^{2} = 1 + 7\Delta N_{y} / 43$ In the absence of the creation of new radiation (via decay ?), N_v (BBN) = N_v (CMB) Comparing N_y at BBN and at recombination \Rightarrow 0.94 \leq N_v (BBN) / N_v (CMB) \leq 1.23